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Abstract — A regular perturbation analysis is presented for the radiative effects on the following laminar natural convection
flows with temperature dependent viscosity: a freely-rising plane plume, the flow above a horizontal line source on an adiabatic
surface (a plane wall plume) and the flow adjacent to a vertical uniform flux surface. While these flows have well-known power-law
similarity solutions when the fluid viscosity is taken to be constant, they are non-similar when the viscosity is considered to be a
function of the temperature. A single similar flow, that adjacent to a vertical isothermal surface is also analyzed for comparison in
order to estimate the accuracy. Numerical results with various parameters are tabulated. © Elsevier, Paris.

natural convection / radiative effects / heat transfer

Résumé — Influence du rayonnement dans des écoulements de convection naturelle. On présente I'analyse d’une perturbation
réguliére pour étudier les effets radiatifs sur divers écoulements laminaires en convection naturelle avec une viscosité dépendante
de la température : un panache plan non confiné, un écoulement au-dessus d’une source linéaire horizontale sur une surface
adiabatique (panache de paroi plane) et un écoulement adjacent & une surface verticale a flux uniforme. De tels écoulements ont
des solutions bien connues, de type semblable, avec lois de puissance, lorsque la viscosité du fluide est constante, mais des
profils non similaires lorsque la viscosité varie avec la température. Ainsi, un écoulement simple, de type similaire, adjacent a une
surface verticale isotherme est aussi analysé pour valider le modéle. Les résultats numériques obtenus avec diverses valeurs des
paramétres sont tabulés. © Eisevier, Paris.

convection naturelie / effets radiatifs / transferts de chaleur

Nomenclature Q total heat convected downstream. ... W-m—2
q* surface heat flux................... W.m~2
b,c,d defined in equation (9) L § q° local radiative heat flux ............ W-m~2
Cp specific heat of the fluid............ Jkgm K™ R conduction-radiation
parameter
Cr temperature difference parameter ... K T temperature . .............c...o.... K
f dimensionless stream function T: film temperature................... K
GTT local Grashof number u,v  velocity components in x and y
Gr,  actual local Grashof number directions ............ .. ... L. m-s~1!
g acceleration due to gravity.......... m-s~2
k thermal conductivity............... Wm—1.K~! Greek symbols
K absorption coeflicient............... m~! o thermal diffusivity ................. m?-s~1
M momentum flux in the x direction... kg-s~? 8 coefficient of thermal expansion . . . .. K-1
™m mass flow rate per unit width of o n dimensionless distance
v surface. . ... il kg:s™ m 0 dimensionless temperature.. .. ... ... . m
N}"‘ gus:ilt nufmber . i dynamic viscosity .................. kg-m=1.s7!
cat lransier parameter p density......ocovviiiiiii kg-m~3
Pr Prandtl number ¥ perturbation parameter
stream function.................... m2.s~!
* Correspondence and reprints. ¥ 1 .—2
T shear stress............ ... ... ... kgm™"-s

gorla@csaxp.csuochio.edu
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Subscripts

f condition at film temperature
0 condition at the wall
oo condition far away from the surface

Superscripts

! differentiation with respect to 7

1. INTRODUCTION

Due to the importance of the influence of the variable
fluid properties in many engineering applications, a
lot of analytical and experimental work has been
directed towards determining the effects of variable
fluid-properties in natural convection flows. Much of
this work was reviewed in the recent papers by Kakac
et al. [1], Herwig [2] and Kakac [3].

The earliest theoretical treatment of variable prop-
erty effects on natural convection is the analysis of
Hara [4] for air. Sparrow [5, 6] considered natural con-
vection with variable properties. He indicated that the
film temperature is adequate for most applications and
suggested a more accurate reference temperature for
more extreme conditions. Variable property effects in
water and carbon dioxide at supercritical pressures were
analyzed by Nishikawa and Ito [7] in the case of natu-
ral convection adjacent to a vertical isothermal surface.
Barrow and Rao [8] examined the effect of variable co-
efficient of thermal expansion, 3, on natural convection
in water, but ignored the temperature dependence of
absolute viscosity p, which is known to be important.
Brown [9] used an integral method with variable 8 and
the density, p, but overlooked the important variation
of u in his study of natural convection.

Carey and Mollendorf [10] presented a boundary
layer similarity analysis for the laminar natural convec-
tion from a vertical isothermal surface. Their analysis
was applicable to liquids wherein the viscosity wvari-
ations are large compared to other fluid properties.
Thermal radiation effect on natural convection in lam-
inar boundary layer flow with constant properties over
an isothermal flat plate was investigated by Ali et al.
[11]. The radiative mode of heat transfer becomes im-
portant when the temperature difference between the
plate surface and ambient is large. The motivation for
the current study came from a lack of understanding
in the literature, of the coupled effects of variable vis-
cosity and thermal radiation on natural convection heat
transfer.

The present study was undertaken in order to
investigate the effects of thermal radiation and variable
viscosity on séme natural convection flows. Results have
been obtained for four representative kinds of surface
temperature variation, namely, an isothermal surface, a

uniform heat flux surface, a plane plume and the flow
generated from a horizontal line energy source on a
vertical adiabatic surface.

2. ANALYSIS

Let us consider a steady, two-dimensional, vertical
natural convection flow and incorporate the usual
Boussinesq and boundary layer assumptions. The
absolute viscosity, u, is taken to be a temperature-
dependent variable in the force-momentum balance. The
fluid is assumed to be a gray, emitting and absorbing,
but non-scattering medium. The radiative heat flux in
the z direction is considered negligible in comparison
with that in the y-direction. This results in the following
governing equations:

Ju v
3% 5&—0 (1)

Ju dJu 1 9 Ju
W B 12 (u@ 198(T-Ta) (@)

oT = dT _ <82T 1aqr>

“ax+”ay’°‘ dy2  k dy
where u and v are the vertical and horizontal velocity
components respectively and T is the temperature.
Except for u, the fluid properties in (2) and (3) are
as viewed as constant to be evaluated at some reference
temperature.

The radiative heat flux term is simplified by using
the Rosseland approximation [12] as:

r 4o oT*
73K oy @

where o and K are the Stefan—Boltzman constant and
mean absorption coefficient, respectively.

Proceeding with the analysis, we introduce the
following transformations:

n=yb(z),$ = % e(z) f(n,z)

3)

T-T, _ _ n
0(n,z) = o =T’ (To —Tw)o=d(z) =Nz
2 3 _ 1/4
4 e
Gr, 114 40 (T — Tw) T
Y A LICIES S P
4 kK (To — Too )y

(5)

where R is the conduction-radiation parameter, Crt is
the temperature difference parameter, and (7o — Tw)
is the downstream temperature difference (along the
z-axis). The absolute viscosity, u, is assumed to vary
with temperature according to a general functional form
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u = pr S(0), where u¢ is the absolute viscosity at the film
temperature T¢, where § = 0.5. Therefore, S(1/2) = 1.
This form is chosen to allow definition of the stream
function based on the absolute viscosity at the film
temperature. For all liquids, all transport properties
vary with temperature. However, for many liquids, such
as petroleum oils, glycerin, glycols, silicone fluids and
some molten salts, the percent variation of absolute
viscosity with temperature is much greater than that
of the other properties. Under these conditions, an
analysis incorporating the above assumptions describes
the momentum and thermal transport within the flow
field much more accurately than the usual assumption
of constant properties, evaluated at some reference
temperature. A wide variety of functional forms of
S(6) satisfy this requirement, for example, algebraic
expressions, power series, exponential forms etc. A
simple but accurate form of S is considered here, namely:

_ 1 du _
S = {1+ p (ﬁ) (T Tf)J 6)

This simple form amounts to a linear variation of
absolute viscosity with temperature, with the slope
dp/dT evaluated at the film temperature.

The assumed linear variation of viscosity with
temperature gives rise to a new parameter -y, defined

as:
o= (G55 ) ®-T Q

where ps is the value of p at the film temperature.
Substituting equation (7) into equation (6), we have the
following:

§=[1+%(0—-05) (8)

For a linear variation of viscosity with temperature,
if po and p., are the values of viscosity evaluated at the
surface and ambient temperatures, respectively, then we
have:

¥ = 2 (fo = oo )/ (0 + froo) (9)

It can be seen from equation (9) that the maximum
value of 2 for ¢ occurs when (uo/pe.) approaches
infinity. Likewise, the minimum value of —2 for ¢ occurs
when (po/pe.) approaches zero. Piau [13] suggested
that for higher Prandtl number liquids, the variation
of # with temperature is negligible. He performed
calculations for the asymptotic case, Pr — oo for a
single data point involving v = —0.3614.

Using equation (8), we may write:

= pf [1+7f (9—%)] (10)

Expansions for the dimensionless stream function
and temperature are postulated as:

foy) = f(n,x) = folm) + e fr(m) +...  (11)
0(nye) =0(n,z) = Oo(n) + v br1(n) +... (12)
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Here, we consider only first order terms and therefore
the expansion for u, f and € are truncated after terms
of order ~.

Substituting (10), (11) and (12) into (2) and (3)
and using the transformations in (5), the equations for
fo,00, f1 and are then obtained as follows:

F = (@n+2) f* + (n+3) f§ fo+60=0 (13)
[1 + % R(Cr +90)3] 04 + 4R (Cr + 00)2 02
+Pr[(n+3)8 fo—4nfof0] =0 (14)

= Bn44) fo fi 4+ (5n+3) f fu+ (n+3) fo fl

+61+ fo (80— 1/2) + 65 fo =0 (15)
4R 3| 2 1"
1+—3—(CT+90) 8 +4R(Cr + 60)° 618,

+8R(Cr +60)2 0,61 + 8 R(Cr + 80) 61 6>
+ Pr[(n+3) fof1 —8n fo61—4n f] 6
+(5n+3) fi6h] =0 (16)

In the above equations, a prime indicates differen-
tiation with respect to n only. The relevant boundary
conditions for the four flows to be analyzed here are as
follows:

a) isothermal surface with horizontal leading edge
n=20

8(o0,x) = f'(0,2) = f(0,z) = f'(c0,2) =1~ 0(0,z) =0
1~ 60(0) = fo(00) = f5(0) = fa(0) = fo(co) =0
81(0) = 61(c0) = fo(0) = f1(0) = fi(00) =0 (17)

b) uniform flux surface with a horizontal leading
edge, n =1/5

9(00717) = f’(07w) = f(O,x) = f'(oo,m) =0
1—80(0) = 65(0) = fo(0) = fo(0) = fo(c0) =0
61(0) = 61(00) = f1(0) = f1(0) = fi(c0) =0 (18)

¢) an adiabatic surface with a concentrated heat
source along the horizontal leading edge, n = —3/5.

9'(0,:1:) = fl(Oax) = f(O’z) = f’(OO,.’L‘) =0
1 = 60(0) = 65(0) = f5(0) = fo(0) = fo(c0) =0
01(0) = 61(00) = f1(0) = f1(0) = fi(c0) =0 (19)

d) a plane plume rising from a horizontal thermal
source, n = —3/5

9/(071‘) = f(0,z) = f”(O,:E) = f/(ooﬂj) =0
1 —60(0) = 65(0) = fo(0) = f5'(0) = fo(o0) =0
01(0) = 61(c0) = f1(0) = f1(0) = fi(c0) =0 (20)
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For the isothermal condition, » = 0, and since
61(0) = 0, the temperature at y = 0 is not altered
by varying ~:. Consequently, the film temperature,
Tt = (To + To)/2, and (To — T.,) are not altered by
varying -. Therefore, for the isothermal condition, ~¢ is
equal to (l) (d_,u) (To—T.) as defined by Carey and

yaa £ dT /¢

Mollendorf [4]. The values of n shown above for the other
three flow conditions are determined by calculating the
value of Q(x), the total heat convected in the flow at
any downstream location z:

Q(x)=/mpCp (T 7)) udy
0

= g Cpcd/ 0fdn o @M% (21)
0

This must increase linearly with z for the uniform
heat flux surface condition, (b), and independently of x
for the adiabatic flows, (¢) and (d). Therefore,

ng =0, ny =1/5, ne =ng = -3/5 (22)

Including the first order terms in f and 4 for v # 0,
Q(z) is:

Q(z) = pe Cpcd [/ 6ofédn+7f/ (60 f1+ 6 fo) dn
0 0

(23)

For the uniform flux condition, (b), and the adiabatic

flows, (c) and (d), integration of the first order energy

equation (16) shows that the second integral in (23)

is zero. This is required to ensure that additional x

dependence is not added to Q(z) through +¢. The mass
flow per unit width of surface, 1, becomes

m:/ pudy
0

= ufc/m f'dn = pecfo(oo) + e fi(oo)]  (24)

0

and the momentum flux in the z direction is given by:

oo 2 2 o
M(w)=/ puzdy=“f—c{)/ f2dy
0 P 0

2 2
b
= #f; [Imo + ¢ Iva] (25)

where
IM0=/ fo?dn and 1M1=/ 2 fo fidn
0 0

The stream function, as defined here, is based on
the film viscosity. For the flows adjacent to a vertical

surface, the shear stress at the surface, 7o(x), is therefore
a function of ~¢ directly, as well as through f”(0):
/ 3/4
no(z) = uf (4/2%) (Gra/8)™ 7 /p  (26)

where 7 = (1 + 6(0)/2) 1(0)/[6(0)]¥/*.
Substituting the expansions for 8, f” and keeping
only first order terms in ¢ yields

™ = [(1+%/2) )+ ()] / 60(0) + 3 02(0)*

(27)

The surface heat flux, ¢”(z) and the local Nusselt
number Nu, are determined as follows:

" aT) o (aT“)
q =~k {5 a3z | 5= (28)
(ay =0 3K \ dy y—o

1

_ q z
Nue = 77 %
(0) (Gry) 4R

O [1+T(C’I‘+0)3] (29)

where 8(0) = 8o(0) + v 61(0) and Gr, = Gr; 6(0).
Defining the heat transfer parameter N’ as:

r_ Nug \/§
N = (Gr’z)l/“
we have:
O] o

3. RESULTS AND DISCUSSION

The system of equations (13-16) with the boundary
conditions (a—d) was solved numerically by the fourth
order Runge-Kutta integration scheme. Calculations
were carried out for the values of Prandtl number
of 5, 10 and 50. The conduction-radiation parameter R
ranged from 0 to 1 with Cr = 0.1.

Figures 1 and 2 illustrate the velocity and temper-
ature profiles, for the isothermal surface condition. We
observe that the velocity f' and temperature § within
the boundary layer increase with increasing values of
R. As the temperature difference between the surface
and ambient (Tp — T ) increases, the buoyancy force
increases, which in turn will augment the streamwise
velocity. We also note that as (Tp — Tw.) increases,
the conduction-radiation parameter, R, increases and
therefore augments the temperature distribution within
the boundary layer.

Figure 3 shows the values of the heat transfer
parameter, N', predicted by the perturbation analysis
for the isothermal and uniform heat flux surfaces. For
both the isothermal and uniform heat flux surface
conditions, 4+ < 0 increases the surface heat transfer
while 4¢ > 0 reduces it. Also, the heat transfer parameter
N’ increases as R decreases.
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Figure 1. Velocity profile for the isothermal surface condition
with Pr = 10 and v = —0.8.
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Figure 2. Temperature profile for the isothermal surface
condition with Pr = 10 and +; = —0.8.
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Figure 3. The effect of gf on heat transfer for the isothermal
and uniform heat flux surfaces.

Figures 4-7 show the effects of R and 4; on the
velocity and temperature profiles for the flow above a
horizontal line thermal source and those on a vertical
adiabatic surface. We notice that the velocity and
temperature increase with increasing values of R. The
effect of +¢ is similar to that of R. For vt < 0, increasing
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Figure 4. Velocity profile for an adiabatic surface condition
with Pr = 10 and s = —0.8.
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Figure 5. Temperature profile for an adiabatic surface condi-
tion with Pr = 10 and vy = —0.8.
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Figure 6. Velocity Profile for the plane plume surface
condition with Pr = 10 and vt = —0.8.

R produces increasing 6(0,~s), while for ¢ > 0, the
effect is opposite. We note that for many liquids, 4 is
greater than zero and v = (;Ll— %)f (To — T is less
than zero. The most common case for v < 0 is given
by To > T, and upward flow with pg < pe.. The most
common case for ¢ > 0 is given by Ty < T, and upward
flow with o > pieo.
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Figure 7. Temperature‘ profile for the plane plume surface
condition with Pr = 10 and v+ = —0.8.

Figure 8 shows the effect of +¢, Pr and R on the
centerline velocity and temperature for the plane plume.
Increasing <+ actually produces a slight decrease in
F'(0,7) and an increase in the centerline temperature
for the adiabatic flow.

The numerical results of the perturbation analysis
for the four flow configurations corresponding to the
indicated values of Pr, v+ and R are summarized
in tables I-1V. For the isothermal condition, table V
provides a detailed comparison of the perturbation
results with those for the corresponding similarity
solution.

R=1,1,0

0
Pe=10,50,10,50 iorz=IiT

0.2+ R=0,1,0,1
Pr=50,50,10,10

0

L

-08 -06 -04 -02

0 5 0.2 0.4 06 08

Figure 8. The temperature (adiabatic surface) and the velocity
(plane plume) at the wall.

4. CONCLUDING REMARKS

The present results show the effect of a linear
temperature dependent viscosity on laminar natural
convection in liquids when other property variations
can be neglected. The temperature difference between
the surface and the ambient is assumed to be large
enough to include radiative effects. The assumption
that other property variations are small when compared
to the viscosity variation is realistic for many liquids.
The assumption of a linear dependence of viscosity

TABLE |
The numerical results of the perturbation analysis. a) isothermal case n = 0.
Pr Ve 0'(0) 1'(0) 80(0) 61(0) f7(0) ¢'(0)

0.0 5.0 —-0.8 0.48047 —0.18265 —0.95103 0.05581 0.62659 —0.99568

0.0 - - - - 0.48047 —0.95103

0.8 - - - - 0.33435 —0.90638
5.0 5.0 -0.8 0.52044 —0.18940 —0.62612 0.03914 0.67196 —0.65743
- - 0.0 - - - - 0.52044 —0.62612
- - 0.8 - - - - 0.36892 —0.59481
1.0 5.0 -0.8 0.54936 —0.19482 —0.50168 0.03172 0.70521 —0.52705
- - 0.0 - - - - 0.54936 —0.50168
- - 0.8 - - - - 0.39350 —0.47630
0.0 10 —0.8 0.41767 —0.16238 —1.16521 0.07222 0.54757 —1.22299
- - 0.0 - - - - 0.41767 —1.16521
- - 0.8 - - - - 0.28777 —1.10743
0.5 10 -0.8 0.45390 —0.16930 —0.76870 0.05133 0.58935 —0.80976
- - 0.0 - - - - 0.45390 —0.76870
- - 0.8 - - - - 0.31846 —0.76870
1.0 10 -0.8 0.48057 —0.17483 —0.61727 0.04201 0.62043 —0.65088
- - | 0.0 - - - - 0.48057 —0.61727
1.0 10 0.8 0.48057 —0.17483 —0.61727 0.04201 0.34071 —0.58366
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TABLE I
Uniform heat flux n = 0.2.

R | Pr Ve 0 (0) 1(0) 80(0) 61(0) f7(0) 6(0)

0.0 5.0 -0.8 0.45329 —0.15830 —1.07333 0.04749 0.57993 0.96201
- - 0.0 - -~ - - 0.45329 1.00000
- - 0.8 - - - - 0.32664 1.03799
5.0 5.0 —-0.8 0.49181 —0.13134 —0.70803 0.11434 0.59688 0.90853
- - 0.0 - - - - 0.49181 1.00000
- - 0.8 - - - - 0.38674 1.09147
1.0 5.0 —0.8 0.51978 —0.10758 —56830 0.16004 0.60584 0.87197
- - 0.0 - - - - 0.51978 1.00000
— - 0.8 - - - - 0.433710 1.12803
0.0 10 —0.8 0.39370 —0.14012 —1.31228 0.05008 0.50579 0.95993
- - 0.0 - - - - 0.39370 1.00000
- - 0.8 - - - - 0.28160 1.04007
0.5 10 —0.8 0.42852 —0.11544 —0.86726 0.12108 0.52086 0.90314
- - 0.0 - - - - 0.42852 1.00000
- - 0.8 - - - - 0.33617 1.09686
1.0 10 —-0.8 0.45421 —0.09363 —0.69751 0.16840 0.52912 0.86528
- - 0.0 - - - - 0.45421 1.00000
1.0 10 0.8 0.45421 —0.09363 —0.69751 0.16840 0.37931 1.13472

on temperature gives rise to the parameter 4+ whose
value dictates the magnitude of the viscosity variation.
The results indicate that the temperature dependent
viscosity has a significant effect on the temperature and
velocity fields as well as the heat transfer rate and drag.
The strong effect of temperature dependent viscosity on
the flow field would suggest the possibility of significant
effects on the stability and transition of such flows.
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TABLE il
Line source plume n = —3/5.

R | Pr Ve 0 (0) 1(0) 61(0) £(0) 6(0) Iq Imo Ivs

0 4 —0.8 0.4739 —0.0036 —0.0147 0.4768 1.0118 0.2256 0.1703 —0.00892
- - 0.0 - - - 0.4739 1.0000 0.2313 0.1745 —0.00914
- - 0.8 - - - 0.4712 0.9882 0.2314 0.1746 —0.00914
0.5 5 -0.8 0.5008 —0.0088 —0.0114 0.55())78 1.0091 0.2699 0.1944 —0.00806
- - 0.0 - - - 0.5008 1.0000 0.2709 0.1949 —0.00803
- - 0.8 - - - 0.4938 0.9909 0.2709 0.1949 —0.00803
1 5 —0.8 0.5215 —0.0131 —0.0102 0.56319 1.0082 0.3041 0.2120 —0.00698
- - 0.0 - - - 0.5215 1.0000 0.3049 0.2124 —0.00695
- - 0.8 - - - 0.5110 0.9918 0.3049 0.2124 —0.00695
0 10 -0.8 0.4139 0.0028 —0.0244 0.4117 1.0195 0.1614 0.1326 —0.01137
- - 0.0 - - - 0.4139 1.0000 0.1579 0.1306 -0.01148
- - 0.8 - - - 0.4162 0.9805 0.1578 0.1306 —0.01148
0.5 10 —-0.8 0.4387 —0.0007 —0.0168 0.4393 1.0135 0.1847 0.1451 —0.01117
- - 0.0 - - - 0.4387 1.0000 0.1853 0.1454 —0.01116
- - 0.8 - - - 0.4382 0.9865 0.1854 0.1454 —0.01116
1 10 -0.8 0.4580 —0.0038 —0.0140 0.4610 1.0112 0.2087 0.1579 —0.01065
- - 0.0 - - - 0.4580 1.0000 0.2093 0.1582 —0.01064
- - 0.8 - - - 0.4550 0.9888 0.2093 0.1582 —0.01064
0 50 —0.8 0.2935 0.0105 —0.0461 0.2851 1.0369 0.0654 0.0705 —0.01111
- - 0.0 - - - 0.2935 1.0000 0.0619 0.0683 —0.01112
- - 0.8 - - - 0.3019 0.9631 0.0618 0.0683 —0.01112
0.5 50 —0.8 0.3126 0.0096 —0.0302 0.3049 1.0241 0.0726 0.0757 —0.01186
- - 0.0 - - - 0.3126 1.0000 0.0729 0.0758 —0.01187
- - 0.8 - - - 0.3203 0.9759 0.0729 0.0758 —0.01188
1 50 —-0.8 0.3278 0.0087 —0.0242 0.3208 1.0194 0.0825 0.0821 —0.01233
- - 0.0 - - - 0.3278 1.0000 0.0827 0.0828 —0.01234
1 50 0.8 0.3278 0.0087 —0.0242 0.3348 0.9806 0.0827 0.0823 —0.01234
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TABLE IV
Line source on adiabatic surface n = —3/5.

R Pr e 0 (0) 1(0) 61(0) f"(0) 6(0) Iq Imo I
0 5 —0.8 0.6923 —0.1901 0.1127 0.8444 0.9098 0.1689 0.0781 —0.02344
- - 0.0 - - - 0.6923 1.0000 0.1731 0.0800 —0.02403
- - 0.0 - - - 0.6923 1.6000 0.1731 0.0800 —0.02403
- - 0.8 - - - 0.3403 1.0902 0.1732 0.0801 —0.02405
0.5 5 —-0.8 0.7306 —0.2092 0.0687 0.8980 0.9450 0.2074 0.0930 —0.02478
- - 0.0 - - - 0.7306 1.0000 0.2082 0.0934 —0.02480
- - 0.8 - - - 0.5632 1.0550 0.2083 0.0934 —0.02480
1 5 —-0.8 0.7589 —0.2207 0.0527 0.9355 0.9679 0.2386 0.1053 —0.02528
- - 0.0 - - - 0.7589 1.0000 0.2394 0.1056 —0.02530
- - 0.8 - - - 0.5823 1/0421 0.2394 0.1056 —0.02530
0 10 —0.8 0.6106 —0.1688 0.1247 0.7456 0.9003 0.1126 0.0516 —0.01886
- -~ 0.0 - - - 0.6106 1.0000 0.1094 0.0502 —0.01869
- - 0.8 - - - 0.4755 1.0997 0.1094 0.0502 —0.01869
0.5 10 -0.8 0.6469 —0.1863 0.0776 0.7959 0.9379 0.1315 0.0584 —0.02019
- - 0.0 - - - 0.6469 1.0000 0.1321 0.0586 —0.02023
- - 0.8 - - - 0.4979 1.0621 0.1321 0.0586 —0.02023
1 10 —0.8 0.6743 —0.1967 0.0606 0.8317 0.9515 0.1520 0.0663 —0.02143
- - 0.0 - - - 0.6743 1.0000 0.1525 0.0665 —0.02146
- - 0.8 - - - 0.5169 1.0485 0.1525 0.0665 —0.02146

50 —-0.8 0.4393 —0.1245 0.1426 0.5389 0.8859 0.0386 0.0173 —0.00804
- - 0.0 - - - 0.4393 1.0000 0.0355 0.0161 —0.00770
- - 0.8 - - - 0.3397 1.1141 0.0354 0.0161 —0.00769
0.5 50 —-0.8 0.4686 —0.1383 0.0911 0.5792 0.9271 0.0429 0.0189 —0.00897
- - 0.0 - - - 0.4686 1.0000 0.0431 0.0189 —0.00901
- - 0.8 - - - 0.3580 1.0729 0.0431 0.0189 —0.00901
1 50 —0.8 0.4914 —0.1467 0.729 0.6088 0.9417 0.0526 0.0227 —0.01047
- - 0.0 - - - 0.4914 1.0060 0.0501 0.0216 —0.01020

50 0.8 0.4914 —0.1467 0.0729 0.6088 0.9417 0.0526 0.0227 —0.01047
- - 0.0 - - - 0.4914 1.0000 0.0501 0.0216 —0.1020
1 50 0.8 0.4914 —0.1467 0.0729 0.3741 1.0583 0.0500 0.0216 —0.01019
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TABLE V
Comparison of the perturbation analysis, p, with the similarity solution,
s, for an isothermal vertical surface.

R Pr ¥e i:ggg % Error % % Error
R
I
00 | 10 | —0s | 0B0 4z | IR 14
~ ] - | o8 | oasmee | M9 | Tiosao | 09
ORI
~ | - | o8 | omes | 8 | Cogmor | 09
030 | 10 | o8 | 08291 433 | TN 1.6
~ | - | o8 | osomes | U3 | Coswsos | 10
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